2022-01-21
目前,各种电储能技术大体可分为以下3类:物理储能(如抽水蓄能、压缩空气储能、飞轮储能等),电化学储能(如锂离子电池、铅炭电池、钠硫电池、全钒液流电池等)和电磁储能(如超导电磁储能、超级电容器等)。
今天简单介绍基于非物理储能的电储能技术。
(1)电化学储能
目前的电力系统中已大量采用用各种技术成熟的可充放电电池系统作为电化学储能体系,目前常用储能电池技术体系主要包括四大类:锂离子电池、铅炭电池、液流电池、钠硫电池。
其中,锂离子电池和铅蓄电池因为产业化基础好,具有明显的成本优势,因此仍是目前电化学储能市场的首选。根据相关统计,国内电化学储能项目应用集中在用户侧,随着风力发电、光伏发电的爆发式增长,引入电池储能系统有利于提升风电、光伏利用率,增大收益。由于风力、光伏发电的高峰期与用户用电的高峰期在时间上是错开的,因此引入储能系统,可明显提升用户收益;分布式燃气发电系统同样可以引入电池作为储电装置,削峰填谷,改善系统稳定性;增加备用,增加系统抗干扰力;功率支撑,改善系统供能稳定性。从系统发电侧到用户用电侧,电池系统可以平滑负荷,减小对备用容量的需求,提高收益;实现不同发电方式之间的耦合;系统故障时,可帮助重启系统,恢复正常运行;改善功率分布,保证用户的供电质量;作为应急和备用,解决短时间的供电短缺;即插即用,及时进行能量补充。
(2)电磁储能
2.1超导电磁技术
超导电磁储能原理是工作时把能量存储在流过超导线圈的直流电流产生的磁场中,其特点是效率高(>97%)、响应快(ms级)、无污染等,在超导状态下线圈的电阻可以不计,因此能耗非常小,可以用来进行长期无损耗的储能。但是超导线圈需要在温度极低的液体中工作,因此成本太高,同时也会增加系统的复杂性。目前在电力系统中的应用主要用于提高系统的暂态稳定性,改善电能质量和风电、光电等随机性强的间歇式新能源并网特性。
2.2超级电容器
超级电容器的原理是依据双电层原理直接存储电能,介于常规电容器和电池之间,其充放电可逆性非常好,优于电池,可进行数十万次的反复充放电循环。针对超级电容器响应快、循环寿命长的特点,和电池能量密度高、循环寿命短的特点,将二者结合形成混合储能系统,取长补短。在风电、光伏发电系统中,一般使用超级电容器优先充放电,同时充当“功率缓冲器”,平抑尖峰及往复性风电功率波动,延长蓄电池的使用寿命;能量密度大的蓄电池,作为系统中的主要能量来源,用于平抑风电功率的长期稳态波动,调节超级电容器荷电状态,从而快速响应风电功率的下次波动。这样的混合搭配既避免了单独采用蓄电池储能造成的功率超额配置,又避免单独采用超级电容器储能所引起的成本增加,有效降低了储能系统的投资成本。
锂电池设计,重要的是要满足客户的要求,针对不同的用途、功能,设计出相应的电池。那么在设计锂电池时,可以从哪几方面来考虑呢?1、安全是重要的因素,无论锂电池应用于哪个领域,安全重要。确保锂电池在使用和储存过程中的安全,不高热,不起火,不爆炸。2、
锂离子电池与铅酸电池类似,在使用时要注意安全。检查满充电电压,一般为4.20V/节,并相应设置阈值。确保串联的锂电池没有超过这个电压。当锂离子电池电压达到4.20V/电池时,电流下降到额定电流的3%,或达到底部不能再下降时,电池充满电。当充满电后,断
众所周知,国家提倡绿色可持续发展。电动汽车行业新国标出台后,电动汽车的各项标准都有严格的规定,尤其是电动车电池使用锂电池,这意味着电动汽车的检测将更加严格。另一方面,企业也需要具备3C认证和电动摩托车资质。整体来说,以锂电池取代电动汽车的铅酸电池是比
锂电池有机电解液污染小且能提供稳定的锂离子源,使其得到快速发展,但液态有机电解液与正负相互兼容并在滥用分解气体等恶劣条件下,导致电池结构损坏,严重时甚至发生爆炸和火灾。因此,有必要在液态有机电解质的基础上进行改进。目前,各研发单位和机构主要专注于电解
从电池的发明到商业应用,锂电池的发明与商业使用要晚于干电池,但时至今日,锂电池应用基本占据了干电池市场。锂电池和干电池哪个好?干电池是非循环电池,而锂电池是循环可充电电池。它可以随意使用。干电池一般含有汞、铅等重金属,因为是原电池,用完会被扔掉,容易
铝壳电池是以胶体聚合物为电解质的可充电电池。铝壳电池的特点如下:1、不存在电池漏液问题,电池不含液态电解液,使用胶体固体。2、可制成薄型电池:厚度可薄至0.5mm。3、电池可设计成多种形状,大可弯曲90左右。4、可制成单节高压:液态电解质的电池只有